空姐 偷拍 10891008生理学与病理生理学系
发布日期:2024-10-04 20:06 点击次数:161
肠谈微生物与宿主之间互惠共生,密不行分,定植在宿主体内的共生微生物不错通过多种机制影响宿主生理与病理生理功能。其中,胆汁酸是换取宿主与肠谈微生物的枢纽信使分子【1-3】。东谈主体在肝脏由至少17种不同的酶将胆固醇代谢为胆酸(CA)和鹅去氧胆酸(CDCA)等低级胆汁酸,而低级胆汁酸通过胆汁开释到肠谈,经由肠谈微生物代谢为脱氧胆酸(DCA)、石胆酸(LCA)等次级胆汁酸。次级胆汁酸不错通过调控法尼醇X受体(FXR)、胆汁酸G卵白偶联受体5 (TGR5)、维生素D受体 (VDR) 等宿主受体,在宿主糖脂代谢、免疫交代等多个生理与病理生理过程中阐述枢纽作用【4-8】,因而受到了商榷东谈主员的庸碌神志。但是,当今肠谈微生物对胆汁酸的修饰类型还有待挖掘,不同胆汁酸与疾病调控的分子机制尚不解确。此外,对菌群胆汁酸代谢的生物合成通路领路是知晓次级胆汁酸生成机制、开垦靶向性调控战略的必经之路,但当今仅有几类次级胆汁酸的合成通路得到领路【9,10】,很难通过成例的组学技能对新式胆汁酸合成通路进行挖掘,奈何不基于先验常识发现新式胆汁酸的生物合成通路仍然是一项高出有挑战性的学科问题。
2024年4月22日,北京大学医学部基础医学院/北京大学第三病院医学改进商榷院姜长涛讲授团队、北京大学第三病院乔杰院士团队、北京大学第三病院庞艳莉团队、温州医科大学附庸第一病院郑明华团队以及北京大学医学部药学院贾彦兴团队相助,在Cell杂志在线发表了题为 Gut symbionts alleviate MASH through a secondary bile acid biosynthetic pathway 的商榷论文, 构建了基于点击化学富集战略连合非靶向代谢组学措施的次级胆汁酸挖掘体系,发现肠谈菌群对胆汁酸的全新修饰类型—3-酰基化修饰,并在菌群、小鼠、东谈主群三个维度系统地检测了7种3-酰基化胆汁酸的丰采及流行率。 通过分离培养建构肠谈菌株库及大范围筛选,商榷团队发现单形拟杆菌 (Bacteroides uniformis) 是3-琥珀酰胆酸 ( 3-sucCA ) 主要产生者。进一步,通过基于活性的卵白跟踪纯化战略,商榷团队挖掘出3-sucCA的合成酶——“ BAS-suc ”。终末,临床队伍提醒3-sucCA与代谢关联脂肪性肝炎 ( MASH ) 进度呈显赫的负关联性。商榷团队 真切领路了3-sucCA对MASH进度的改善作用与分子机制,发现其通过菌群重塑—促进益生菌嗜黏卵白阿克曼氏菌(Akkermansia muciniphila)的滋长,改善肠障蔽损害,裁放慢性低水平炎症,从而逆转小鼠的MASH进度。



制版东谈主:十一
参考文件
[1] PERINO A, SCHOONJANS K. Metabolic Messengers: bile acids [J]. Nature metabolism, 2022, 4(4): 416-23. [2] COLLINS S L, STINE J G, BISANZ J E, et al. Bile acids and the gut microbiota: metabolic interactions and impacts on disease [J]. Nature reviews Microbiology, 2023, 21(4): 236-47. [3] FUCHS C D, TRAUNER M. Role of bile acids and their receptors in gastrointestinal and hepatic pathophysiology [J]. Nature reviews Gastroenterology & hepatology, 2022, 19(7): 432-50. [4] SUN L, XIE C, WANG G, et al. Gut microbiota and intestinal FXR mediate the clinical benefits of metformin [J]. Nature medicine, 2018, 24(12): 1919-29. [5] ZHENG X, CHEN T, JIANG R, et al. Hyocholic acid species improve glucose homeostasis through a distinct TGR5 and FXR signaling mechanism [J]. Cell metabolism, 2021, 33(4): 791-803.e7. [6] HANG S, PAIK D, YAO L, et al. Bile acid metabolites control T(H)17 and T(reg) cell differentiation [J]. Nature, 2019, 576(7785): 143-8. [7] SONG X, SUN X, OH S F, et al. Microbial bile acid metabolites modulate gut RORγ(+) regulatory T cell homeostasis [J]. Nature, 2020, 577(7790): 410-5. [8] CAMPBELL C, MCKENNEY P T, KONSTANTINOVSKY D, et al. Bacterial metabolism of bile acids promotes generation of peripheral regulatory T cells [J]. Nature, 2020, 581(7809): 475-9. [9] RIDLON J M, GASKINS H R. Another renaissance for bile acid gastrointestinal microbiology [J]. Nature reviews Gastroenterology & hepatology, 2024. [10] FUNABASHI M, GROVE T L, WANG M, et al. A metabolic pathway for bile acid dehydroxylation by the gut microbiome [J]. Nature, 2020, 582(7813): 566-70. [11] GENTRY E C, COLLINS S L, PANITCHPAKDI M, et al. Reverse metabolomics for the discovery of chemical structures from humans [J]. Nature, 2024, 626(7998): 419-26. [12] QUINN R A, MELNIK A V, VRBANAC A, et al. Global chemical effects of the microbiome include new bile-acid conjugations [J]. Nature, 2020, 579(7797): 123-9. [13] MULLOWNEY M W, FIEBIG A, SCHNIZLEIN M K, et al. Microbially catalyzed conjugation of GABA and tyramine to bile acids [J]. Journal of bacteriology, 2024, 206(1): e0042623. [14] MOHANTY I, MANNOCHIO-RUSSO H, SCHWEER J V, et al. The underappreciated diversity of bile acid modifications [J]. Cell, 2024, 187(7): 1801-18.e20. [15] GUZIOR D V, OKROS M, SHIVEL M, et al. Bile salt hydrolase acyltransferase activity expands bile acid diversity [J]. Nature, 2024, 626(8000): 852-8. [16] RIMAL B, COLLINS S L, TANES C E, et al. Bile salt hydrolase catalyses formation of amine-conjugated bile acids [J]. Nature, 2024, 626(8000): 859-63. [17] SATO Y, ATARASHI K, PLICHTA D R, et al. Novel bile acid biosynthetic pathways are enriched in the microbiome of centenarians [J]. Nature, 2021, 599(7885): 458-64. [18] CANI P D, DEPOMMIER C, DERRIEN M, et al. Akkermansia muciniphila: paradigm for next-generation beneficial microorganisms [J]. Nature reviews Gastroenterology & hepatology, 2022, 19(10): 625-37. [19] HAN Y, LI L, WANG B. Role of Akkermansia muciniphila in the development of nonalcoholic fatty liver disease: current knowledge and perspectives [J]. Frontiers of medicine, 2022, 16(5): 667-85. [20] MAIER L, PRUTEANU M, KUHN M, et al. Extensive impact of non-antibiotic drugs on human gut bacteria [J]. Nature, 2018, 555(7698): 623-8.